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Abstract
Combined asymptotics and numerics (CAN) give an insightful picture of
shear layer cavities and provide a means of quickly visualizing the flow
pattern within them.  It appears that the recirculating flow can be
modeled with inviscid approximations of the viscous flow for many
practical cases. For bodies transiting the shear layer of such cavities such
as in store separation, much of the details such as the modification of the
apparent mass effect due to the shear layer can be obtained from cross
flow approximation-inner solutions from slender body theory.  These
tools are now being extended to transonic flows.

1. Need for store separation work

Air-launched weapons is an essential military technology that can provide strategic and
tactical supremacy. Emphasis on safe, high-accuracy, reliable store separation will be
critical for weapon system upgrades to cost-effectively meet threats in a financially
austere environment for new aircraft development for the foreseeable future. Although
the problem of weapons release from an aircraft platform has received much attention,
more effort is needed to understand the underlying basic physics and essential
parameters. In a larger sense, this technology is a subset of the problem of the
interactions between moving bodies in all speed ranges. Applications include separation
and carriage of various stage vehicles for space missions and flight testing as well as
crew escape. For this group, hypersonic multistage vehicle concepts of interest to the
U.S. Air Force frequently utilize the launch of a small rocket-powered stage from a large
subsonic or transonic aircraft such as the B-52. Other examples are the PEGASUS series
and the Shuttle. Currently, multistage launch scenarios are envisioned for future
hypersonic and space applications. A new thrust involves the use of airbreathing
(scramjet or turbo-scramjet) rather than rocket-powered stages.

Many of the previous investigations of store separation have been confined to external
store carriage. Comparatively less attention is being given to separation from cavities and
bays. This is probably due to the additional complications related to the interaction of the
store with the shear layer and the store as well as the coupling with the walls of the
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cavity. Many of the large-scale computational simulations have focused on acoustic
interactions with the cavity and the associated structural loadings on the fins of the
guidance avionics. Much of these large amplitude oscillations are associated with
traveling waves along the shear layer and their interaction with recirculating cavity flow.
By contrast to the empty cavity, the filled cavity poses other challenges. The three phases
of the motion, above, across and below the shear layer involve special combined
dynamics and aerodynamic problems.

2.  Physics and modeling issues

Figure 1 shows the various phases of a weapons-bay store release. These are:

A) Internal regime in which the store is well within the cavity.

B) Transitional regime in which the store is transiting the shear layer.

C) External flow regime in which the store is outside the cavity but still influenced by it.

Inside the cavity, high-amplitude oscillations of the recirculating flow occur. In spite of
these amplitudes, the inertia of the store is such that the average effect is nulled out and
the dominant physics is the interaction of the store with the layer. While the store is in the
cavity, the interaction with the walls can be significant if the wall dimensions are
comparable to the store's. As the store crosses the shear layer, three subcases can be
distinguished. Ifτ  is the thickness ratio of the store and δ  is the shear layer thickness,
these are

i. 
δ
τ

→ 0

ii. 
δ
τ

= O( )1

iii. 
δ
τ

→ ∞

Case (i) is a practical limit at typical flight Reynolds numbers. Accordingly, it has been a
primary focus of our research. It is also the simplest of the three. Nevertheless, it presents
many mathematical challenges. Foremost are the possibility of nonlinear boundary
conditions that occur on the shear layer. These result from specification of equality of
pressure across the shear layer between the cavity and the external flow. For practical
situations involving high fineness ratio almost cylindrical bodies the nonlinearities can be
reasonably approximated as second order and giving a much simpler boundary condition.
Within the initial emphasis of determining parameters that control safe separation,
unsteady processes such as traveling vortices, edge tones, shear layer impingement
phenomena and instabilities, as well as bifurcating "flapping" states that are important for
store-fin structural integrity, were suppressed in favor of understanding the structure of
the time-averaged cavity flow. The latter is critical for safe separation, assuming fin
survival. Figure 1 shows supporting estimates that strongly suggest that although violent
short-period acoustic oscillations occur inside the shear layer, the inertia of the store is so
large that its motion is primarily controlled by rigid-body aerodynamics.
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Fig. 1 Store separation from a weapons-bay cavity, motion phases.

3. Empty cavity flows

To treat the empty cavity, we exploited several simplifications that we believe accurately
reflect the true physics of the problem. Case (i), enumerated above, gives a systematic
asymptotic structure in which the shear layer in an outer expansion approximation looks
like a vortex sheet. As a first implementation of this concept , the interaction of the
vortex sheet with the cavity flow was worked out for a two-dimensional cavity.

The “outer” background flow field of the empty cavity flow was determined from an
eigenfunction approach to model the cavity core flow in an inviscid approximation. This
flow was matched with a Blasius free shear layer simulating the interaction of the “inner”
cavity flow with the external flow. Formal matching gave us a consistent  approximation
scheme for our domain-decomposition solution method. An output of the matching was
to provide boundary conditions for the outer recirculating flow. Because of its slow
speed, the dominant approximation is harmonic. To our knowledge, this is the first time
such a procedure has been used for such a problem.
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Fig. 2 Store in cavity.

Fig.3 Eigenfunction solution of empty cavity flow field.

Figure 2 illustrates a system which was used to implement this approach. To illustrate its
power, the aforementioned matched asymptotic approach was used to compute the
recirculating eddy flow in the empty shear layer. Figure 3 summarizes and solves the
related boundary value problem for the stream function Ψ accounting for matching with
the viscous shear layer which in the outer limit appears as a vortex sheet of the cavity
flow. A convergent eigenfunction function expansion has been obtained for the empty
two-dimensional laminar shear layer cavity flow. The streamline topology determined
obtained from a 5 minute desktop PC run closely resembles that from from 15 hour CDC
205 runs for a 3-D turbulent shear flow cavity as shown in Fig. 4. An important
stagnation singularity at the downstream wall allows a steady state recirculating eddy
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structure. Understanding the  loads imposed on a store from this vortex will be critical in
assessing  safe separation and store certification for all three services. The structure of
this solution is provides a launching pad for computing the filled cavity flow. Coupling
this with the latter has given us new insights into the key lumped dimensionless groups
controlling the safe store separation phenomenon to complement qualitative inferences
from large-scale CFD runs.

During the formulation of the problem shown in Fig. 3, considerations such as those
indicated in Fig. 2 illuminated lumped nondimensional parameters such as that
expressing the ratio of gravitational to viscous forces. These can be used for experimental
design and scaling. Estimates based on such parameters show that when the store is
inside the cavity, a flow regime can occur for which

•  gravitational forces dominate, and the initial drop phase of the store is controlled
primarily by rigid body dynamics.

•  the shear layer deformation is small compared to the store thickness.

•  the cross flow is pseudo-steady.

•  the interaction of the body with walls is weak

Fig.4 Comparison of CAN (IA) and CFD solutions for shear layer-driven cavity flow.
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4. Flat plate interaction with shear layer

One of our recent activities was focused on modeling the coupled fluids and dynamics
problem of a wing-like shape separating from a cavity. This work was a prelude to
numerical implementation as well as studying the physics of bodies of revolution and
more complicated bodies such as combined bodies and fins. This effort is to provide new
insights into these basic physical processes to complement current large-scale CFD
simulation efforts. With our combined asymptotic and numerical framework, the
following unit problems have been formulated:

(A) Body moves inside cavity (internal regime)

(B) Body is transiting the shear layer between the cavity and external flow (transitional
regime)

(C) Body moves outside the cavity (external regime)

These problems have been studied using asymptotic methods which lead to drastic
reduction of the problem size from large-scale computationally-intensive CFD
approaches.

For the internal and external regimes, forces and moments on a slender body inside and
outside a 3-D rectangular cavity closed-form representations have been obtained. For the
transitional regime, interaction between a discontinuous inviscid approximation to the
shear layer and a thin low aspect ratio delta wing has been analyzed. Lumped
nondimensional parameters that control interaction between the body and shear layer
have been identified. Formulations were made for various distinguished limits in the
transitional regime involving the relative size of body angle of attack, slenderness (e.g.,
span to chord ratio and other parameters). We have obtained approximate analytical
solutions for the flow field, pressures, forces and moments for many of these cases.

As indicated by Wright Labs AfSIM, simplified modeling of these processes is essential
to develop control methods to assure safe store separation from weapons bay cavities.
They are also critically important in assessing the safe separation and Circular Error
Probability (CEP) targeting accuracy impact of noise and vibration alleviation methods
such as pulsed blowing and spoilers for weapons bays. These are frequently devised to
disrupt the destructive interaction between recirculating eddy structures and shear layer
instabilities.

Figure 5 illustrates the appropriate boundary value problem for the inner expansion
perturbation velocity potential for an almost rectangular flat plate slender wing of span b
dropping under gravity below a shear layer y  direction (in regime (C)). Here, the
displacement quantityY t( ) denotes the normalized distance of the plate from the shear
layer. In addition to the boundary conditions shown, the perturbation potential behaves
like Z −1 as Z → ∞ , where Z z iy= +  and all lengths are scaled by the span b  where
b → 0 . Details of this analysis will be provided elsewhere. Only the main points will be
mentioned here.
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b−b

Y t( )

y y, ′

′z′A A

O

ϕ ϕyy zz+ = 0

ϕ y Y t= ′( )

image

ϕ = 0 0
z

shear layer

Fig.5 Crossflow “biplane problem” for plunging plate.

Important special cases connected with pure plunge (zero angle of attack) have been
investigated. Combined limits based on a time scale which is the square root of the span
divided by the acceleration of gravity g  (the time for the lifting surface to drop its own
span b ) have been identified. These limits involve the small parameterε  which is the
dimensionless span in units of the wing chord L  and the Froude number F , where if

U = freestream velocity then F
U

gL
= . The occurrence of the Froude

number F underscores the resemblance of the flow physics (in some respects) to those
occurring in water entry and impact problems such as those of underwater missiles,
seaplane landing and skip-bombing in World War II. To our knowledge, this important
connection has apparently never been previously recognized. It should be noted that
important dissimilarities exist since although sudden differences in forces occur across an
interface, in the hydrodynamic case, the interface divides two media of greatly different
density. In the weapons-bay store application, the interface is roughly a tangential
velocity discontinuity with no density discontinuity across it.

In an important limit involving high F andε → 0 , the nonlinear boundary conditions on
the shear layer can be linearized to its undistorted position and its shape is a passive
scalar that can be determined from the flow tangency condition after the flow field is
solved. Although this problem also yields an integral equation, we have shown that this
complexity can be bypassed by using a conformal mapping similar to that appearing in
the theory of biplanes which involves elliptic functions and integrals characterizing a
Schwarz-Christoffel transformation.

Here the inner time scale is related F . Since the flow is incompressible, the unsteady
effect is related to the time derivative of the potential appearing in the unsteady Bernoulli
equation as well as the parametric dependence of the boundary conditions on time shown
in Fig. 5. The incompressible assumption is made for convenience as a stepping stone to
transonic future effort in which the transonic and incompressible inner near field
boundary value problems both have a similar implicit steady structure with the
time t entering parametrically. The incompressible assumption is also of direct relevance
to airdrop applications.
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The aerodynamics is coupled to the dynamics through the plate dynamical equation of
motion

′′ = − = − ′Y t
L

W
CY t f Y( ) ( ) ( )1 1 ,                                           (1)

where L  is the lift on the plate and W is its weight. The lift is given by

( )L c z Y t dz
b

= ∫1 0
ϕ , ( ) ,                                                     (2)

where c1  is a constant independent of y  and z , and the function f Y( )  is proportional to
the lift L .

The solution of the boundary value problem shown in Fig. 5 arises in biplane theory (cf.
[1]) and allows us to evaluate the integral in (2). This is in terms of elliptic functions and
integrals* that will be detailed elsewhere. What is new is the association of this boundary
value problem with a flat plate separation from a shear layer. We are not aware of this
connection having been made before. As indicated previously, the homogeneous
Dirichlet condition expressing continuity of the pressure from the cavity to that of the
external flow across the shear layer y = 0  only applies if ′b x( ) =0, where x  is in the
streamwise direction. Otherwise, a mathematically interesting nonlinear boundary
condition arises involving the squares of the crossflow velocities on the shear layer as
previously indicated.

Certain other restrictions on the slope of the body, if relaxed make the subsonic problem
more nonlinear in that the shear layer becomes a truly free boundary in that its position is
no longer at y = 0 , but interacts with the solution for ϕ . This invalidates the reflection
procedure used here. We conjecture that these complications may not substantially alter
the qualitative features of the solution that we discuss here. Coupling the dynamics and
the aerodynamics gives an unique and interesting initial value problem for the trajectory
Y t( ) . This consists in solving (36) subject to the initial conditions

Y

Y v

( )

( )

0 0

0 0

=
′ =





                                          (3)

where the initial velocity v0 is associated with the drop through the cavity. It is interesting
to note that the coupling between the dynamics and aerodynamics is associated with the
nonlinear term CY f Y′ ( ) in (1) which is determined as a passive scalar. To our
knowledge, this type of decoupling of the otherwise complicated interaction has also not
been previously developed. In [1], f Y( )  was only computed in a limit of small Y
because of the unavailability of computers at the time of this early work.  Fig. 6 shows
the variation of the normalized lift, which is half of its large-time asymptotic appropriate
to no shear layer interaction in the freestream. This is because the side facing the cavity
experiences ambient pressure just as the plate crosses the shear layer, while that exposed
to the freestream has the elliptic pressure loading that would have existed on the bottom
face of a plunging plate in an infinite flow without a shear layer.

                                                
*A different approach using elliptic theta functions and Cauchy integrals is indicated in [2] for flat bodies
and bodies of revolution.
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Because of the strong nonlinearity, even the simple looking Eq. (36) had to be solved
numerically. In fact, it exhibited stiff properties, due to the “boundary layers” at t = 0
and ∞ .

Figure 7 shows the effect of the nonlinearities and the coupling of the lift and the drop
trajectory for large values of the ballistic parameter L W .

Fig 6 Shear layer interference lift inteference function  (f(y)=normalized lift ordinate),
H B Y b≡ .

Fig.7  Plunging plate trajectories.
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Fig.8 Vertically translating cylinder in crossflow plane with local polar coordinate
system.

5.  Bodies of revolution interacting with shear layers

A close-up of the boundary value problem for the near field of a plunging cylinder in
proximity to a shear layer generated by a cavity adjoining an incompressible flow is
shown in Fig. 8. This problem is almost identical to the dominant order transonic inner
problem. Without the shear layer present, the exterior Neumann problem for the inner
perturbation velocity potentialϕ  with Neumann data given

ϕ θ~ ( , , ~)
~

(~) sinr x R z Y t= ′                                                 (4)

where 
~

(~)′Y t  is the plunging velocity and t  is a Froude normalized time. For slender
bodies, ϕ ϕ~~ ~~yy z z+ = 0  and ϕ → → ∞0 as ~r . This matches with a streamwise line doublet*

inner representation of an outer solution is solved by a crossflow doublet at the origin
′O , since the distance a in outer coordinates is negligible.

The complex  potential F Z i( ) = +ϕ ψ , where Z z iy= ′ + ′  are relative to the origin O
shown in Fig. 8  which satisfies the condition that ϕ  =0 on the shear layer, AB  is

F iC
Z ia Z ia

=
−

+
+









1 1
.                                          (5)

Note that the introduction of the image term in (5) to satisfy the homogeneous boundary
condition

        ϕ ( , )z 0 0=                                                         (6)

“spoils” the Neumann boundary condition (4). A second order correction must be made
by re-imaging the doublet image by inversion into the circle in the upper half plane.
Continuing this process gives an infinite set of images. This generates an asymptotic

                                                
* This is similar to that used in the first two authors’ work on wind tunnel wall interference theory.
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expansion in the parameter 
R

a
 which holds in the limit 

R

a
→ 0 . This structure is clarified

by referring quantities to the origin at O  and introducing the new variable w = Z ia−  so
that with the first correction to the complex potential is

F iC
w w ia

= +
+









1 1

2
.                                           (7)

This gives the complex velocity

′ = −F w iC( )
1 1

22 2w w ia
+

+






( )

.                                   (8)

By (8) and

∂ϕ
∂

∂
∂r

F w
w

r
= 








Re '( ) ,                                             (9)

we obtain

r

C r w

w

w ia

∂ϕ
∂

= +
+

+








Im
( )

1

2 2 � .                                   (10)

For a general sequence of reflections in which

F iCf w w a w a w a= − − −( , , , ,1 2 3 � ),

where the location of the doublet reflection points are at a ii , , ,= 1 2 3� *

{ }∂ϕ
∂

θ

r
iCf w ei= ′Re ( ) .                                                (11)

From these relations it is clear that

 C R= − 2 .                                                           (12)

It  appears that successive corrections for the shear layer B.C. and the cylinder B.C. each
of which is diminishingly spoiled by the last image appears to give a divergent series.
However, this is typical of asymptotic expansions in which the optimum number of terms

can be one or two!  Equation (10) can be interpreted in this way so that as
R

a
→ 0

∂ϕ
∂r

R

r w
O

R

a
= + 













2 1
                                               (13)

                                                
* Note that the reflections in the circle involve changing the strength of the doublet. See Milne-Thompson,
Hydrodynamics, 3rd ed., ¶ 8.81, p. 217.



(SYA) 37-12

Numerical studies show that (4) is satisfied by (13), even for
R

a
of the order of 0.5.

Even
R

a
 near unity appears to be a reasonable approximation.  In the future effort, the off-

boundary robustness of the two-term asymptotic as an approximation to the solution will
be explored. To compute the linear trajectory of the body, the following equation holds in
normalized coordinates

′′ = −Y t
L

W
( ) 1 ,                                                 (14)

where L  is the lift and W  is the weight. Defining a lift coefficient as

C
L
U lL = 1

2
2 2ρ ,

where l is the store length, and a pressure coefficient

C
P P

U
p =

− ∞
1

2
2ρ

,

then since

Cp t= −2 2δ ϕ ,

the one-term asymptotic expression for CL  is

( ) ( ) ( ) ( )C R d R Y tL l t l
= − = ′′∫8 2

2

0

2 2
2δ π δϕ θ θ,
~ ~

where the doublet solution is used to obtain

ϕ
θ

= C
r

sin
~                                                       (15)

Since the lift is proportional to the acceleration , this analysis shows how it plays the role
of an apparent mass. In fact, the equation of motion becomes

( ) 1~~
1

2

=′′














+ tYR

l

δ
                                            (16)

that shows the retarding effect of the lift. In future work, the effect of the shear layer
reflections on the apparent mass term M  in (16) will be obtained, first, for the linear
approximate boundary condition and secondly, for the previously mentioned nonlinear
and free boundary effects.

A cross-check of the imaging procedure will use the mapping

W Z= − −2 1cot

which maps the region exterior to the circle representing the cross section of the
cylindrical store to the inside of a rectangle in the upper half of the W  plane. This
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mapping is a combination of a logarithmic and bilinear transformation and provides two
pencils of biaxal circles to form a bipolar network in which the store is embedded. The
vertical sides of the rectangle correspond to the two sides of the cut y  axis between 0 and
i a R( )−  in the Z plane. Its top is the perimeter of the circle and its bottom is the origin
Z =0. The shear layer maps into the origin W =0. The W  transformed Neumann problem
can then be solved by an eigenfunction expansion. This solution will be also used to cross
check the solution of the boundary element methods for nonlinear problems.

cavity

store

~z

~y

Fig.  9  Cross flow projection of cylindrical store transiting shear layer.

Shalaev,  Fedorov and Malmuth in recent analyses [3] describe initial approaches to treat
coupling with the shear layer and the walls as well shear layer transit interactions with
pitch. The transit interactions are shown schematically in Fig. 9. The corresponding inner
solutions [3] allow us to calculate the vertical evolution of the body center of inertia and
pitch angle history for the separation to subsonic or transonic streams. Comparisons of
that analysis with subsonic experimental data were obtained in a test program that we
implemented with M. Hites and D. Williams of the Illinois Institute of Technology (IIT)
and reported in [4]. A major innovation tailored to our analytical thrust was to perform
free drop experiments in a wind tunnel as contrasted to the Captive Trajectory Support
(CTS) system typically used in store tests. The latter intrinsically assumes pseudo-steady
conditions and is confounded by largely unknown sting interactions. We chose to avoid
these issues as well as to tailor the experiments to complement our theoretical studies.
Generic store shapes consisting of tail-finned ogive cylinders were tested. The
experimental arrangement was a cavity cut-out in the IIT wind tunnel simulating a
weapons bay as shown in Fig. 10. A special compression actuator system was developed
to almost instantaneously and cleanly release the stores. A variety of runs were made, for
various values of the ballistic parameter and other variables. Store configurations
associated with these variations are shown in Fig. 11. The models were caught by a series
of nets downstream of  the test section. Linear and angular trajectories were obtained by
post-processing of ultra fast photographic scans of the trajectories. Initial comparisons
with this database and our theoretical results given in the next section.
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Fig. 10 Top: wide –angle of view of 41″×20″×5″ cavity in installed in the IIT National
Diagnostic Facility, cables and hoses can be seen since top panel is transparent,
bottom: close-up of the cavity showing the perspective of the side view camera.
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Fig. 11 Stores selected for tests.

6. Comparison with experiment

Theoretical model
To bound the problem we have initially used a simplified model for calculations of the
lift force and the pitching moment. Within the cavity we consider just a free drop. When
the body intersects the shear layer we use the exact solution of the potential equation.
When the body is completely outside the cavity, we use a simple solution, which does not
account for interaction with cavity walls and shear layer.

Experimental data
We consider the following cases reported in [4]:
1. Light finless model B4N2 with the initial angle of attack θ0 0=  at freestream Mach

number M = 0182. . Experimental data of this case are shown in Fig. 42 of [4]. In this
case pitching is very small and the angle of attack is close to zero.
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2. Light finless model B4N2 with the initial angle of attack θ0 0=  at freestream Mach
number M = 0 225. . Experimental data of this case are shown in Fig. 45 of [4]. The

model rotates inside the cavity and attains the pitch angle about θ = 11o by the
moment of interaction with the shear layer (time is about 0.1 s). Then the model

pitches down to θ = −2 4. o.

We did not consider cases for the heavy finless model B1N1 because they are weakly
sensitive to the flow. In these cases the model trajectory is well defined by a simple free
drop approximation.

Comparison
Figure 12a shows the vertical coordinate y of the gravity center as a function of time t for
Case 1 (see also Fig. 42 of [4]). Figure 12b shows the pitch angle θ   as a function of time
t. In this case aerodynamic force and moment are small. The theoretical curve y(t) (solid
line) is close to the free drop approximation (dashed line) as well as experimental data
(points). The theory predicts the general trends of the pitch angle history θ( )t . As soon
as the model gets in the free stream, the pitch angle starts to oscillate.

    
a)      b)

Fig. 12 Comparison of theory (solid line) with experimental data of Case 1 (symbols).

Figure 13 shows the vertical coordinate y of the gravity center as a function of time t for
Case 2 (see also Fig. 45 of Ref. [3]). Figure 13b shows the pitch angle θ  as a function of
time t. In this case aerodynamic force and moment cause a detectable effect. The
theoretical curve y(t) (solid line) is closer to the experimental data (symbols) than the free
drop approximation (dashed line).  The model attains the pitching angular velocity inside
the cavity. We think this pitch is due to the release mechanism.  In our calculations we
consider the inside motion as a free drop. Starting from the moment of the intersection
between the model surface and the shear layer, we perform our calculations using
experimental values of the pitch angle as an initial condition. It is seen that our
theoretical model predicts the pitch down effect observed in experiment.
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a) b)

Fig. 13 Comparison of theory (solid line) with experimental data of Case 2 (symbols).

7. Transonic regime

In order to calculate the drag force we analyze the outer asymptotic region, )1(2 Or =τ .
In scope of the slender body theory [5], the transonic regime differs from the subsonic
regime in this region only. In Ref. [6], we showed that the outer flow is induced by
sources distributed along the body axis. Their intensity depends on the cavity span and
characteristics of the inner solution.  As an example, we consider the body separation
from a flat plate that models the store separation from a wing of a transport aircraft. In
this case, the outer problem corresponds to the flow over the body of revolution with the
cross-sectional area distribution ����� ����

�
= , where ����  is body cross-sectional area.

Accounting for this relation we can calculate the wave drag, which is a function of the
transonic Karman-Guderley similarity parameter only. The friction drag is modeled using
the empirical method of Schlichting-Grenwill [7].  The pressure drag is calculated by
integration of the inner-field pressure over the body surface. The lift force and pitch
moment are calculated using the theoretical model described above. Figures 14a and 14b
show the body trajectories for the freestream Mach number 999.0=∞M  for zero initial

vertical and angular velocities. It is seen that for an initial angle of attack �60 =α , the

body moves up to re-contact the wing (see Fig. 14a). For  �60 −=α  (Fig. 14b), the body

can escape from the wing. Its angle of attack oscillates with growing amplitude. This
indicates weak dynamic instability of the store under consideration.
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Fig. 14a Trajectories at various initial angle of attack, freestream Mach number 0.999.

0 10 20 30 40 50
-10

-8

-6

-4

-2

0

V
0
=0.

ωωωω0
=0.

 αααα 0000
=-6o

wall

Y
/D

0

X/D
0

����������

0 50 100 150 200
-10

-5

0

5

10

15

V
0
=0. m /s, αααα 0000

=-6
o

ωωωω0
=0.

α ααα
, 

d
e

g

t, m sec

	
�����
�����
�����

Fig. 14b Center of gravity trajectory and pitch angle history at initial angle of attack
�60 =α .

8. Conclusions
Combined asymptotics and numerics (CAN) give an insightful picture of shear layer
cavities and provide a means of quickly visualizing the flow pattern within them.  It
appears that the recirculating flow can be modeled with inviscid approximations of the
viscous flow for many practical cases. For bodies transiting the shear layer of such
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cavities such as in store separation, much of the details such as the modification of the
apparent mass effect due to the shear layer can be obtained from cross flow
approximation-inner solutions from slender body theory.  These tools are now being
extended to transonic flows. Initial studies show that the inner solution of the
incompressible case plays a significant role in the flow structure for the transonic one.
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Paper: 37
Author: Dr. Malmuth

Question by Mr. Sacher:  Was only drop considered, or ws ejection through the shear
layer also considered?

Answer:  For the analysis in the paper, only drops were considered.  However, our
treatment can be generalized to handle ejection.

Question 2: Is the configurational impact of the carrier aircraft taken in account?

Answer:  The large-scale flow on the airplane was not included in the analysis.  However,
this large-scale flow we believe is an “outer” weak perturbation of our solution,  which is
a local “inner” solution in the terminology of matched asymptotic expansions.  In future
work, this outer solution will be considered.

Question by Mr. Jeune:  Is it possible to extrapolate or use your method in supersonic
flow conditions?

Answer:  Absolutely.  We are working on this.

Question by Dr. Khalid:  You showed very good comparisons between your theoretical
prediction and experiment.  How did the CFD computations fair in this comparison?

Answer:  We did not attempt any CFD computations yet.  We intend to make this
comparison in the future.

Question by Mr. Verhaagen:  Would your method help optimize the interior shapes of
the cavity?

Answer:  Yes, we think it will be very helpful for this purpose.
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